

From First Principles to Pilot Scale: Kinetic Modeling of Sour gas-based CO Conversion to Methanol

*Corresponding author: miha.grilc@ki.si

<u>Žan Lavrič</u>, Miha Grilc*, Blaž Likozar Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana/Slovenia

Introduction

Large amounts of CO_2 from heating and industry are emitted annually, with only ~ 2 Gt/year naturally sequestered and a small fraction captured technically at €70–100/ton. Less than 300 kt/year is recovered, and no complete circular CO₂ value chain exists. Refineries and petrochemical plants emit 1.24 Pt/year of CO₂ and process over 3.6 Mt/year of H₂S.

Sour gas—a CO₂ and H₂S mixture—is generated during refining, natural gas extraction, and biogas upgrading. Current treatment relies on the Claus process for sulfur recovery, which requires fuel gas for lean H₂S streams (<55%). CO₂ capture, on the other hand, needs high purity. No existing technology allows for simultaneous reduction of both CO₂ and H₂S.

The eCODUCT project addresses this challenge by electrifying the conversion of acid gases to valuable products (CO and sulfur) co₂ + H₂S through a two-step process:

Conversion to COS: CO₂ and H₂S are converted into carbonyl sulfide (COS) in a fixed-bed reactor over a zeolite catalyst.

Decomposition to CO and S: COS is then thermally decomposed into CO and sulfur in a fluidized-bed electrothermal reactor.

The final step involves converting CO into methanol. A kinetic model for this reaction has been developed using a combination of first-principles calculations and regression based on experimental data.

 $H_2 \Longrightarrow 2H$ $CO + H \Longrightarrow HCO$ HCO + H ← H₂CO $H_2CO + H \implies H_3CO$ H₃CO + H = CH₃OH

Adsorption/Desorption $CO + * \rightleftharpoons CO_{ads}$ $H_2 + * \Longrightarrow H_{2 \text{ ads}}$ $CH_3OH + * \rightleftharpoons CH_3OH_{ads}$

Activation energies for the dominant reaction pathway

Conversion and yield at thermodynamic equilibrium $CO + 2 H_2 \longrightarrow CH_3OH$

Microkinetic model design

Matlab 2025a: ode15s and fminsearch

$$f(k_{j}^{\text{ads}}, k_{i}^{\text{surf}}, k_{j}^{\text{des}}) = \sum_{j}^{I} \left(P_{j}^{\text{measured}} - P_{j}^{\text{calculated}}(k_{j}^{\text{ads}}, k_{i}^{\text{surf}}, k_{j}^{\text{des}}) \right)^{2}$$

Lab scale experiments

Lab to pilot

Lab scale experiments data and prediction by the kinetic model

Aspen equilibrium data and prediction by the kinetic model

Process parameter **prediction** for **optimal** operation on the pilot scale, based on the dimensions of the reactor

Table 1 Predicted data for our pilot scale for L = 0.86m, ID = 0.065 m and $m_{catalyst} = 4.24$ kg

		Calaiysi	3	
#	Temperature °C	Pressure tot barg	Flow rate L/min	Productivity kg/h
1	225	50	36	0.7158
2	225	25	36	0.5107
3	250	50	36	0.6925
4	250	50	50	0.8757
5	230	50	50	0.8699
6	225	50	50	0.8447
7	250	25	36	0.4213
8	280	50	50	0.5464
9	260	50	50	0.8053
10	240	50	50	0.8946

0.887

235