

Electric Decade Workshop 17.01.2024

ēQATOR: Electrically heated catalytic reforming reactor

Richard H. Heyn, Project Coordinator Chief Research Scientist, SINTEF Industry, Oslo Norway rhh@sintef.no

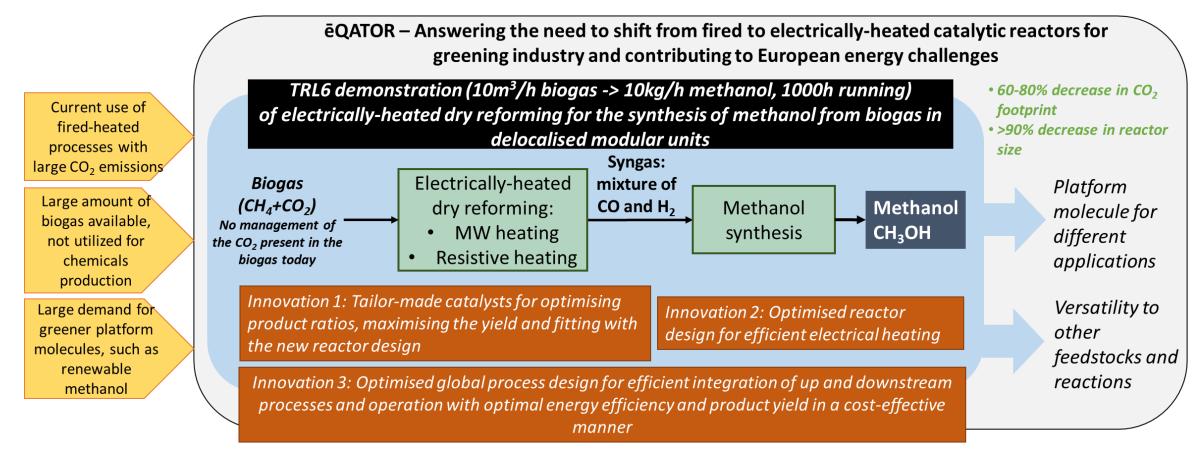
Project information

- June 2022 November 2025
- Project budget 8.544 M€
- Project grant 7.536 M€

Renewable carbon needed for green transition

- Energy can be *decarbonised*. Chemicals and materials must be *defossilized*.
 - Make chemicals and materials from renewable carbon sources rather than fossil carbon sources
 - CO₂, biomass, recycled carbon materials (i.e., plastics)
- Biogas is an attractive source of renewable carbon
 - Ca. 50:50 mixture of CH₄ and CO₂
 - Agricultural
 - Urban (organic fraction of municipal solid waste)
 - 35 Mtonne produced in 2018
 - Estimated growth 4.4 % p.a.
- Biogas currently used *only* for energy production
 - CH₄ separated, CO₂ emitted

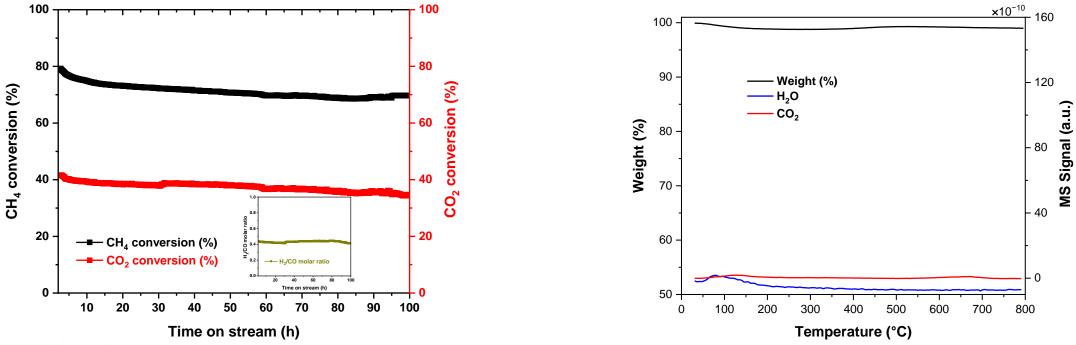
Utilization of biogas for chemicals production – specifically methanol (CH₃OH or MeOH) via dry reforming – will defossilize some MeOH production and promote development of local MeOH economies.


MeOH production today

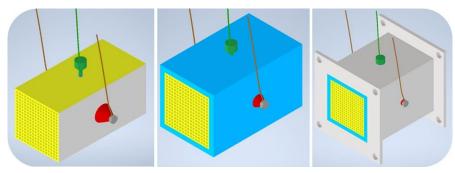
- MeOH is an important base chemical
 - Global market size ca. 98 Mtonne
 - Used as fuel, starting point for many chemicals and polymers
 - World class plants produce up to 3 Mtonne/a
- Production via steam reforming of natural gas to syngas (mixture of CO and H₂), then syngas to MeOH
 - Fossil carbon is both the carbon feedstock and the energy source
 - Reactor heating produces 350 kg CO₂ per 1000 Nm³ syngas
 - Product related emissions are 307 kg CO₂ per 1000 Nm³ syngas
 - Emissions account for 10 % of the CO₂ emissions from the chemical sector
- About 0.2 Mtonne renewable MeOH produced/a
 - Primarily from CO₂ and H₂ (CCU approach)

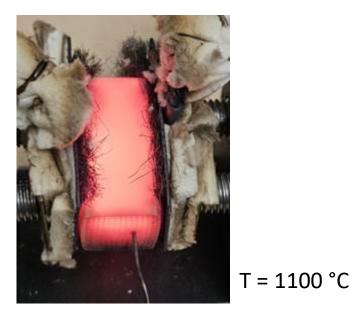
Project objectives

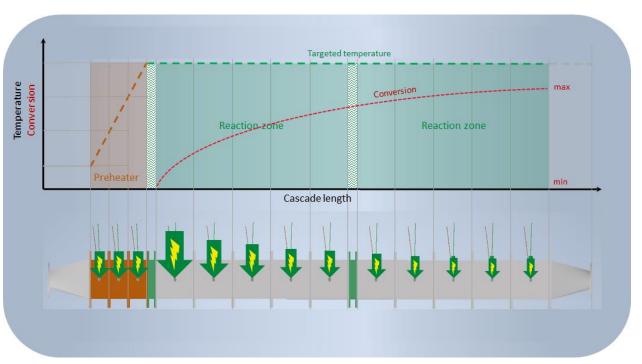
- Syngas from the dry reforming of methane (CH₄ + CO₂), rather from steam reforming of methane
 - More difficult reaction, more prone to coking



Catalyst and process development


- Catalyst coking needs to be minimized/avoided
- Processes developed that provide gas mixtures with minimal coking potential
 - Dry Reforming (CH₄ + CO₂) for a biogas composition produced from the organic fraction of municipal solid waste
 - Mixed Reforming (CH₄, CO₂, H₂O) for a biogas composition produced from agricultural residues (manure)
- Catalyst composition found that shows minimal coking with the Dry Reforming gas mixture over 100 h





Reactor development – resistive heating reactor

Coated honeycombs with electrodes, fiber mats, and metal housing

Schematic temperature profile and conversion over cascade length – differentiated power supply possible

Funded by the European Union

Key Impacts

ēQATOR provides an integrated development of catalysts and reactors, and two different, complementary electric heating technologies: resistive heating and microwave heating set in the set of the set

Reduction of carbon dioxide emissions by 60-80 % compared to current syngas production processes. This reduction will **save from 7 Mt CO₂ per year in 2030, up to around 45 Mt CO₂ per year in 2045.**

Higher conversion per pass, improved heat management, **higher energy efficiency** and better carbon utilisation and atom economy, in **more compact reactors**, using renewable carbon feedstock.

Strong industrial commitment to reach widespread deployment of catalytic process electrification, through economically-viable, local, smaller-scale methanol production from biogas.

Novel, optimised catalysts and reactor designs for biogas valorisation to methanol.

Pathway to TRL 9

- Project will reach TRL 6 by project end
 - Demonstration of resistive heating and microwave heating with two different gas mixtures
 - Dry Reforming (only CO₂ and CH₄) and Mixed Reforming (CO₂, CH₄, H₂O)
 - 10 Nm³/h feed for 1000 h
 - Methanol production step studied on modelled gas from syngas compositions
- Full-scale commercial plant anticipated to have feed of 500 Nm³/h
- TRL 6 reactor design and construction aims to be fully scalable
 - Material selection suitable for larger scale
 - Parallel reactor configuration
- Next step (given caveats of a successful project with positive economic and environmental outlook)
 - Combined reforming and MeOH production at ca. 100 Nm³/h scale

Acknowledgements

- European Commission Grant Agreement No. 101058293
- ēQATOR consortium

www.eqator.eu

ēQATOR project EU

