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Current industrial treatment of acid gas is industrially treated mainly by the Claus process, which has limitations and require additional fuel, nn .
. . S . . . . . . . .. . oo .:9:.
vyhereas CO, reductl'on techr.uques need high p.urlty CO,, necessitating effective separation from acid gas. Hence, no existing technologies allow BoS— % ’ﬂ\ [T .
simultaneous reduction of acid gas components i.e., CO, and H,S. S A and products
Industry / refining waste g
The project e aims to electrify simultaneous conversion of acid gas components into platform molecule carbonyl sulfide COS in a fixed bed —/'
reactor, which is further converted into CO and marketable Sulphur in a electrothermal fluidized bed (ETFB) reactor. The COS formation in
continuous mode from CO, and H,S is the first and most important stage of this process, as follows. ﬂd e co,
Biogas digester HZS ,i.
H2S g+ €O (g = COS (g + Hy0 (o5 | | | ]
In this work, we explore two zeolites 13X and 4A for COS formation, aiming to develop a catalyst that gives high COS yields per pass and low energy — COS Synthesis @
demand for regeneration. H ‘ H ,
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Catalyst: 4 g (250-500 pum fraction) pre-treated for 6h under N, 0.88 560
Feed: pure or mixture of H,S (13%v) and CO, (13%v) in N, Ronghong Lin, | & EC Research. 2015
Conditions: 45— 350 °C, 1 bar, W/F =0.13 g min/mL
Feed sequence Effect of temperature on COS formation Effect of zeolite hydration level on catalyst activity
Catalyst: pre-treated 350°C COS yield at lower temperatures . . .
Conditions: 45°C, 1 bar, W/F = 0.13 g min/mL Catalyst: pre-treated 350°C Hydration & progressive dehydration
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_ 13X deactivates slowly whereas 4A undergoes faster deactivation . . water loss at isothermal step
H,S pre-saturation reaction Hydration level(%) = 100 — total water loss (45 to 350 °C)
COS yield at higher temperatures COS production on available sites
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Fast catalyst deactivation leading to exponential decay of COS. 350°C>T2>2120°C (13%v) and CO, (13%v) in N, Reaction at different hydration levels (from fully H.S and CO, (13%) in N,
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13X has greater dynamic capacity for H,S and CO, as compared to 4A

COS yields during 15t of reaction — 13X < 4A

Total COS vields after 3 hours — 13X > 4A Decrease in COS yields with increase in zeolite hydration level

Pre-saturation of H,S & material dependent dynamic capacity Temperature dependent variation of reactivity of 13X and 4A Influence of hydration state towards reactivity

© Highest conversion at 100 — 120 °C, 13X gives higher total COS yields than 4A
© More pronounced change in half-life of 13X than 4A with varying hydration level

© H,S pre-saturation allows understanding of concentration evolution.

© Slow poisoning of 13X by water whereas faster deactivation profile of 4A
© COS yields proportional to both water sites occupancy and H,S capacity.

l © 4A regains some activity at higher T due to removal of water from some sites l l ! E i '
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© 13X has higher capacity for reactants than 4A
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