

Valorisation Of Greenhouse And Acid Gas By Low-silica Chis **Zeolite Catalyst**

S.R. Batool¹, M. Fabbiani¹, L. Pinard¹, A. Novikov², H. Retot², Valentin Valtchev^{1*}

¹ LCS, CNRS-ENSICaen-UniCaen, 14050 Caen, France

² Saint Gobain Research Provence and NORPRO, Cavaillon, France

*valentin.valtchev@ensicaen.fr

The e-copuct project is funded under Horizon Europe Grant Agreement n°101058100

Currently, industrial treatment of acid gas is mainly done by the Claus process, which has limitations and require additional fuel, whereas CO₂ reduction techniques need high-purity CO₂, necessitating effective separation from acid gas. Hence, no existing technologies allow simultaneous reduction of acid gas components i.e., CO_2 and H_2S .

The project e-CODUCT aims to electrify simultaneous conversion of acid gas components into platform molecule carbonyl sulfide COS in a fixed bed reactor, which is further converted into CO and marketable Sulphur in a electrothermal fluidized bed (ETFB) reactor. The COS formation in continuous mode from CO₂ and H₂S is the first and most important stage of this process, as follows.

In this work, we explore zeolites 13X and 4A for COS formation, aiming to develop a catalyst that gives high COS yields per pass and

13X has greater dynamic capacity for H₂S and CO₂ as compared to 4A

Pre-saturation of H₂S & material dependent dynamic capacity

 \bigcirc H₂S pre-saturation allows understanding of concentration evolution

○ 13X has higher capacity for reactants than 4A

100 150 200 250 300 **Femperature (°C)**

COS yields during 1^{st} of reaction $\rightarrow 13X < 4A$ Total COS yields after 3 hours \rightarrow 13X > 4A

Temperature dependent variation of reactivity of 13X and 4A

⊖ Highest conversion at 100 – 120 °C, 13X gives higher total COS yields than 4A

• Slow poisoning of 13X by water and faster deactivation profile of 4A

 \bigcirc 4A regains some activity at high T due to H₂O removal from some sites

Decrease in COS yields with increase in zeolite hydration level

Influence of hydration state towards reactivity

- More pronounced change in half-life of 13X than 4A with varying hydration level
- \bigcirc COS yields proportional to both water sites occupancy and H₂S capacity

