

THE ELECTRIC DECADE

Discover how electrification technologies support the EU's climate goals

1st JOINT ONLINE WORKSHOP of Horizon Europe projects

17th of January 2024 | 9.00-12.00 CET

STORMING PROJECT

Patricia Benito

Dipartimento Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna patricia.benito3@unibo.it

STÇRMING

STructured unconventional reactors for CO₂-fRee Methane catalytic crackING

HORIZON-CL5-2021-D2-01-09: Methane cracking to usable hydrogen and carbon HORIZON-WIDERA-2022-ACCESS-07 (2nd cut-off)

Starting date: 1st September 2022 Project duration: 36 months

Budget: 3 125 714.75 Euro

305 833.00 Euro for UK partner

Catalytic Methane decomposition

 $CH_{4(g)} \leftrightarrows C_{(s)} + 2H_{2(g)}$ $\Delta H^{0}_{298K} = 74.5 \text{ kJ/mol}$

Type of carbon depends on reaction conditions and catalyst

Challenges:

Growth

Substrate

Tip growth

- Carbon has a twofold deactivation effect:
 - Deactivation catalytic sites
 - Clogging of the reactor

- Heat transfer

STructured unconventional reactors for CO₂-fRee Methane catalytic crackING

To develop breakthrough **structured catalytic reactors** powered by **renewable electricity** to simultaneously produce CO_2 -free or CO_2 -negative \underline{H}_2 and <u>high-quality carbon nanotubes</u>, <u>CNTs</u>, in a <u>continuous</u> **technology** that could be deployed in a sustainable manner.

Production of captive H_2 (on-site production) and the capture of C from the CH₄ as CNTs, an economic credit that reduces the delivered net cost of H_2 .

ORMIP

Catalysts and catalytic reactors operating in a continuous mode with maximized efficiency. Parallel reactors: cyclic mode (switching feedstock feed and regeneration agent stream between the reactors) Early-stage breakthrough catalytic technologies powered by renewable energy to

 \checkmark overcome CH₄ catalytic cracking challenges

 \checkmark match with the final H₂ application and the supply of renewable energy

 \checkmark be easily and quickly scalable to produce H₂ at similar prices to those of grey H₂

Heat transfer: Electrified reactors

Electrification of structured reactors

Three complementary structured catalytic reactors powered by renewable energy

Joule heated fixed bed

- ☑ Heat generated by passing a current through a resistive material.
- ❑ Avoid wall effect and few to no thermal gradients.

Microwave heated fluidized bed

- Selective dielectric heating of catalytic materials.
- ש Gas-solid temperature control

Induction heated fluidized bed

- ☑Selective heating of electrically
conductive and ferromagnetic
materials.
- ש Fast heating, enhance heat transfer.

Direct heating of the catalyst \rightarrow Decrease of temperature gradients and heat losses \rightarrow Increasing heating efficiency Quick start-up time

Structured catalysts/materials

- Pressure drop

- Heat and mass transfer
- Mechanical stability
- Activity

Computational Fluid Dynamics (CFD)

Devices with advanced design, easy production, and high adaptation.

Combination of **geometry** and **composition** to better **control**:

- Heating:
 - Resistance for Joule Heating
 - Dielectric properties to absorb MWs
 - Ferromagnetic materials for Induction Heating

Complex process dynamics

Fe-based catalysts selective for controlled CNTs growth
↘ non-toxic & easily available
↘ more active and stable at high temperature than Ni
Chemical scissor protocols (waste-free) to harvest CNTs and regenerate the catalyst

Impacts STORMING technology

Improved energy efficiency (60 % efficiency, > 95 % considering CNTs) & Selectivity (100% H₂)

Directly heat the catalyst Accurate thermal control Operate at < 800°C no side-products

*ସ୍*ତ୍ରି↑ Process intensification

Operating under transient conditions (quick start-up and shut-down) determined by supply (feedstock, renewable energy)/demand requirements.

Avoid GHG emissions (CO₂ and NO_x)

Pathway to TRL9

Thank you for your attention!

