Alternative to Claus process through COS as intermediate:
CO, and H,S competitive adsorption and reaction on sodium zeolites
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> Electrothermal fluidised
The industrial acid gas treatment approach relies on the Claus process to recover sulphur from gas streams rich in H.,S through high e et Ll
temperature oxidation reactions. To this date, no existing technologies allow simultaneous reduction of CO, and H.,S. To address the —L]oo 20- @ Cog
transition to a low-carbon economy, chemical industry needs to reduce its fossil fuel consumption by decarbonizing its processes, in aneldl @A & - 2,
particular through electrification. L) G §' %,
;I I:
The project provides a new technology for two-step acid gas valorisation i) conversion of CO, and H.S into COS in a fixed U (BHIHE
bed reactor, following the reaction: HEY I co, EE——
HZS (g) + C02 (g) = COS (g) + HZO (adS,) Biogas digester H,S I T ‘ 005
and ii) COS conversion into CO and S, using an electrothermal fluidized bed (ETFB) reactor. éﬁaﬁq
e o, COS Synthesis
In this work, we address the role of FAU type zeolite in the competitive adsorption and reaction of CO, and H,S. H ‘ H
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Competitive adsorption

H.,S and CO, adsorption
Catalyst: pre-treated 350°C
breakthrough curves Conditions: 45°C, 1 bar, W/F = 0.8 g min/mL

for adsorption sites description
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Reactivity follow-up
COS is formed (Y > 90%) when chemisorbed H.S is reacted with a stream of CO..
Conversely, chemisorbed CO, is displaced by H,S and no COS is formed.

H.S and CO, co-adsorption

Catalyst: pre-treated 350°C

Feed sequence Conditions: 45°C, 1 bar, W/F = 0.13 g min/mL
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o Combined phenomena
o 0 60 0 120 Competitive adsorption causes
_TOS (min) o breakthrough and roll-up
competition pseudo-steady  effects for CO, and COS.
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H.S pre-saturation

and C02 reaction Catalyst: pre-treated 350°C

Conditions: 100°C, 1 bar, W/F = 0.13 g min/mL

Feed sequence
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Fast catalyst deactivation
testified by COS exponential
decrease.
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reaction

Single component adsorption and co-adsorption sequences
Chemisorbed H.S fraction is reactive towards COS formation.
Co-adsorption + reactivity: pseudo-steady state (5 - 10 % conversion).

H.S pre-saturation allows understanding of concentration evolution.
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Temperature effect on H,S + CO,

H.S dynamic capacity

Catalyst: pre-treated 350°C
Feed: H,S (13%v) in N,
Conditions: variable T

breakthrough at
different temperatures
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H.S as probe molecule
H.S capacity steadily decreasing with temperature, with a drop at 120°C.

H.S and CO, reactivity
Catalyst: pre-treated 350°C
Feed: pre-saturation in H,S (013%v),
then mix of H,S (13%v) and CO, (13%vV) in N,
Conditions: variable T
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The best conditions
Highest production at 100 -110°C, converging at long reaction time.
Temperature dependent variation of adsorption and reactivity
Physisorbed H.S variation has no influence on amount of produced COS.
Highest conversion at 100 - 110 °C.

Catalyst is slowly poisoned by water.
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Limited conversion
45 to 110 °C = rapid drop in the first hour, then slow catalyst deactivation.
120°C = no catalytic activity.
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Water role on catalyst ability

Hydration and
progressive dehydration

saturated NaCl solution
(75% RH at 20°0C)
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The shape of water
Water progressively removed
from weak and strong sites.
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H.S and H,O competition

Catalyst: pre-treated at variable T
Feed: pre-saturation in H,S (013%uv),

then mix of H,S and CO, (13%vV) in N,
Conditions: 100°C, 1 bar, W/F = 0.13 g min/mL
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COS production
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Catalytic threshold
Strong sites at T > 200°C deactivates rapidly, weak sites slowly deactivate.

Influence of hydration state towards adsorption and reactivity

Thermal treatment cycles restore initial dehydration state - reactivity.
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H.S capacity mirror reflects water sites occupancy.

Progressive recovery of catalytic activity.
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