## Electricity is in the Catalyst: A Reaction Engineering Approach to Gas **Treatment and Valorization**

### Joris W. Thybaut

Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052, Ghent, Belgium











### **GUANGZHOU INSTITUTE OF ENERGY CONVERSION APRIL 26, 2024**











### from a linear to a circular economy



















## reactors





### unraveling the miracle

### chemical/catalytic kinetics





 $r_{hydrogenation} = ?$ 





p<sub>t</sub> = 10 bar p<sub>t</sub> = 20 bar p<sub>t</sub> = 30 bar



### model detail: kinetics

## power law Langmuir-Hinshelwood $1 = \theta_{*_{\text{free}}} \left( l + \sqrt{K_{\text{H}_2} p_{\text{H}_2}} + K_{\text{B}} p_{\text{B}} \right)$ $1 = \theta_{*_{\text{free}}} \left( 1 + \sqrt{K_{\text{H}_{2}} p_{\text{H}_{2}}} + K_{\text{B}} p_{\text{B}} \right)$ $\theta_{*_{\text{free}}} = \frac{1}{\left( 1 + \sqrt{K_{\text{H}_{2}} p_{\text{H}_{2}}} + K_{\text{B}} p_{\text{B}} \right)}$ $r = \frac{C_{t} K_{i} \left( \prod_{j=1}^{i-1} K_{j} \right) K_{\text{B}} K_{\text{H}_{2}}^{i/2} p_{\text{B}} p_{\text{H}_{2}}^{i/2}}{\left( 1 + \sqrt{K_{\text{H}_{2}} p_{\text{H}_{2}}} + K_{\text{B}} p_{\text{B}} \right)^{2}}$





 $r = kp_B^n p_{H_2}^m$ 







### microkinetics





## no unique style (or single truth!)



cubism



Da Vinci

pop art







Aviaru



### simpson



### outline

- introduction
- methane valorization C123
- electrification
- e-CODUCT
- OBIWAN
- conclusions











## today's reality





### requires immediate solutions



Noon et al. J. Nat. Gas Sci. Eng. 18 (2014) 406

Börner and Franke, Wiley, 2016





VALORISING METHANE RESOURCES

C123

https://www.sintef.no/projectweb/c123/

### methane oxidative conversion (**OCoM**) into ethylene, CO and $H_2$ followed by hydroformylation to propanal

WILEY-VCH

Armin Börner and Robert Franke

### Hydroformylation

Fundamentals, Processes, and Applications in Organic Synthesis



### C123 methane oxidative conversion and hydroformylation to propylene



- feedstock: natural gas/associated gas/biogas (methane and  $CO_2$ )
- targeted product: easily transportable/high-value chemical (propanal, propanol, propylene)
- add-on vs modular route





## **Oxidative Conversion of Methane (OCoM)**

Oxidative Coupling of Methane (OCM)

- decades of research •
- entire periodic table as potential catalyst
- awaiting successful commercialization





hydroformylation feedstock production save on separation enhance atom efficiency incorporate CO<sub>2</sub> easily liquefiable product



Selectivity, S<sub>C2</sub> (%)

ΰ



Pirro et al. Reac. Chem. Eng. 5 (2020) 584

Romero-Limones et al. Chem. Eng. Proc. (2024) revision submitted

## CO<sub>2</sub> impact at O<sub>2</sub>-lean conditions



- Selectivity of  $C_2H_4$  is increased at the expense of  $C_2H_6$  selectivity Ο
- CO<sub>2</sub> selectivity is decreased Ο





Seemingly CO<sub>2</sub>-ODH has occurred at these conditions

Cheng et al. Int. J. Chem. Kinet. (2024) revision submitted

## CO<sub>2</sub> assisted dehydrogenation of ethane (CO<sub>2</sub>-ODH)

 $C_2H_6 + CO_2 \rightarrow C_2H_4 + CO + H_2O$ 

|                        | Х <sub>с2Н6</sub> | X <sub>CO2</sub> | S <sub>C2H4</sub> |
|------------------------|-------------------|------------------|-------------------|
| Blank 1                | 29.7%             | 1.9%             | 99.7%             |
| La-Sr/CaO              | 36.7%             | 10.6%            | 99.5%             |
| Blank 2                | 24.3%             | 1.3%             | 99.4%             |
| NaMnW/SiO <sub>2</sub> | 27.3%             | 4.6%             | 99.2%             |

(Conditions: T = 800 °C, P = 1 bar,  $C_2H_6/CO_2 = 8\%/8\%$ ,  $F_v = 142$  ml/min for La-Sr/CaO, 160 ml/min for NaMnW/SiO<sub>2</sub>)

OCM catalysts promotes CO<sub>2</sub>-ODH Ο

previous reports also verify NaMnW/SiO<sub>2</sub> and La<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> are active in ODH of alkenes<sup>1, 2</sup> Ο





| S <sub>CO</sub> |  |
|-----------------|--|
| 0.3%            |  |
| 0.5%            |  |
| 0.6%            |  |
| 0.8%            |  |

J. Zhu et al. *Catal. Today* . **148**, 310–315 (2009)

18

Y. Bi et al. *Catal. Today* . **61,** 369-375 (2000)

## proposed mechanism



- $\odot~\rm CO_2$  competes with O\_2 and forms [O\*]'
- $\circ$  [0\*]' is less active but capable of converting C<sub>2</sub>H<sub>6</sub> into C<sub>2</sub>H<sub>4</sub>
  - $O_2$ -rich:  $C_2H_4$  further oxidized into  $CO_x$  no or negative effect
  - O<sub>2</sub>-lean: C<sub>2</sub>H<sub>4</sub> survives from oxidation positive effect





## ethylene hydroformylation

DRIVING CHEMICAL TECHNOLOGY



## from homogeneous to heterogenized catalysis





## hydroformylation vs hydrogenation





Siradze et al. Chem. Eng. J. (2024) submitted

22

### outline

- introduction
- methane valorization C123
- electrification
- e-CODUCT
- OBIWAN
- conclusions









## heat requirements in chemical reactions

3

- endothermic reactions
  - thermal cracking Heat
    dehydrogenation
  - reforming





Westerterp, et al. Chemical Reactor Design and Operation Wiley (1991)

## exothermic reactions methanol synthesis Fischer Tropsch



## (strongly) endothermic reactions heat transport focused reactor design



**GHENT** UNIVERSITY



- narrow tubes
- fired furnace
- pronounced temperature gradients





Wismann, et al. Ind. Eng. Chem. Res. 58 (2019) 23380

25/51

### how can we do better?

### chemistry ~ cooking





### heat containment







### electrification

26/51

### how can we do even better?





### microwave









## heating from the inside



### reactor electrification

electrical heating -> overcoming limitations of combustion

advantageous in terms of:

- energy efficiency
- process control
- safety and maintenance
- rapid heating





Wismann, et al. Ind. Eng. Chem. Res. 58 (2019) 23380

### electrical heating

### induction

microwave







Imtiaz, et al. Ind. Eng. Chem. Res. 63 (2024) 4205

### Joule



## sonication plasma

## induction heating





Mortensen, et al. Ind. Eng. Chem. Res. 56 (2017) 14006

### alternating magnetic field with a high frequency

# heating without physical

### microwave heating



heating throug energy



Ignacio, et al. Catal. Today 383 (2022) 21





Barham, et al. Chem. Rec. 19 (2019) 188

### heating through electromagnetic

## Joule heating





- electrical energy transformation to thermal energy
- current flow between electrodes
- high energy efficiency



## ElectroThermal Fluidized Bed reactor (ETFB)

- combination:
  - fluidization
  - Joule heating
- compared to conventional fluidized beds
  - better control over bed temperature
  - highly energy efficient
  - rapid and uniform heating









Fedorov J. Fluids Eng. 138 (2016) 044502

33/51

### outline

- introduction
- methane valorization C123
- electrification
- e-CODUCT
- OBIWAN
- conclusions











## e-CODUCT: context

DRIVING CHEMICAL TECHNOLOGY





## e-CODUCT: rationale

fast-response electrically heated catalytic reactor technology for CO<sub>2</sub> reduction



### why?

- current CO<sub>2</sub> reduction technologies require highly pure streams
- no existing technologies for simultaneous CO<sub>2</sub> and H<sub>2</sub>S reduction
- making more feedstock sources available



36/51

### e-CODUCT: process lay-out

Natural gas plants







**GHENT** 

### sustainable products





### http://www.ecoduct.eu 2022-2025 GA 101058100

37/51

### **COS** synthesis: experimental

DRIVING CHEMICAL TECHNOLOGY



### COS synthesis: modeling





### H<sub>2</sub>S Surface Coverage Profile

### **COS** decomposition



- sulphur
- heating





# COS decomposition to CO and

### temperatures up to 800-1200 °C in situ heat generation by joule

## e-CODUCT – ETFB modelling



### **OBIWAN: context**

### - biogas (CH<sub>4</sub> + CO<sub>2</sub>) valorization

- calorific
- to chemicals/(sustainable) aviation fuels













43/51

## hydrogen production (from methane)



- DMR:  $CH_4 + CO_2 \leftrightarrow 2$
- POM:  $CH_4 + O_2 \leftrightarrow CC$
- MP:  $CH_4 \leftrightarrow C + 2H_2$

### Methane Pyrolysis on carbonaceous catalyst:

- □ less energy intensive
- □ no greenhouse gas emission
- $\Box$  high purity H<sub>2</sub>
- □ cheap & sulfur resistant catalyst





| $CO + 3H_2$  | $\Delta H = 206 \frac{kJ}{mol}$ |
|--------------|---------------------------------|
| $2CO + 2H_2$ | $\Delta H = 247 \frac{kJ}{mol}$ |
| $0 + 2H_20$  | $\Delta H = -36 \frac{kJ}{mol}$ |
|              | $\Delta H = 74 \frac{kJ}{mol}$  |

### **OBIWAN: process lay-out**





45/51

### outline

- introduction
- methane valorization C123
- electrification
- e-CODUCT
- OBIWAN
- conclusions









## conclusions, opportunities and perspectives

- from a linear to a circular economy
  - catalysis
  - reactors
  - processes
  - kinetics
- fundamental model-based optimization
  - quantitative assessment
  - validation qualitative understanding



47/51

## conclusions, opportunities and perspectives

- (natural) gas valorization: OCoM process concept
  - combination chemical reactions
  - feedstock composition
- chemical reactor electrification
  - more than connecting an electric heater to the grid
  - reasoning from the inside
  - CO<sub>2</sub> emission reduction
  - integration in a process



### conclusions, opportunities and perspectives

- challenges
  - few large-scale vs many small-scale applications
  - electricity availability
  - impact on the chemistry



### acknowledgments

The e-CODUCT project is funded under Horizon Europe Grant Agreement n°101058100



## Interreg

France – Wallonie – Vlaanderen





Cofinancé par l'Union Européenne **Medegefinancierd door** de Europese Unie

## acknowledgements (2)





















Cofinancé par l'Union Européenne Medegefinancierd door de Europese Unie

### France – Wallonie – Vlaanderen

























51/51

### acknowledgements (3)

### (former) post docs

Ana Bjelic Jeroen Lauwaert Jeroen Poissonnier Pedro Mendes Sebastien Siradze Soroush Zare Zahra Mohammadbagheri

### (former) PhD students Alejandro Romero Limones

Alexandra Bouriakova Anoop Chakkingal Bert Biesemans Beruk Alemu Bekele Bram Van Wettere





<image>

Carlos Alvarado Camacho César Pernalete Kevin De Ras *Klaus Jacobs* Laura Pirro Loïc Eloi Lucas Ivan Garbarino Maria Herrero Manzano Marie-Elisabeth Lissens



Nebojsa Korica Noor Aljammal Pieter Janssens **Raman Ghassemi** Reza Monjezi Tom Vandevyvere Willem De Meyer Wout Callewaert **Yonggang Cheng** 



 12<sup>th</sup> International Symposium on Catalysis in Multiphase Reactors
11<sup>th</sup> International Symposium on Multifunctional Reactors

### CONFERENCE THEME Multiscale modeling and experimentation

Reactor design Process development Low carbon technology Renewable chemicals Polymer design Catalysis and kinetics

## 8-11 SEPTEMBER 2024 Ghent, Belgium



Abstract Submission Deadline: 24 February 2024

### **MORE INFO**

www.camure.ugent.be



### SCIENTIFIC COMMITTEE Chairman of the symposium

prof. dr. ir. Joris THYBAUT

### **Co-chairmen of the symposium**

prof. dr. ir. Kevin VAN GEEM prof. dr. ir. Mark SAEYS



IN FACULTY OF ENGINEERING



## e-CODUCT: Want to know more?!







 $\square$ 

LinkedIn: @e-coduct project https://www.linkedin.com/in/ecoduct/

Twitter: @eCODUCT2022 https://twitter.com/eCODUCT2022

**YouTube:** @ecoduct2022 https://www.youtube.com/@ecoduct202 2/about

> *#e-CODUCT #HorizonEurope #CO2Reduction #innovation #technology*



### LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 125, 9052 Ghent, Belgium

- E info.lct@ugent.be
- T 003293311757

https://www.lct.ugent.be





### Modified ER Mechanism

### Eley-Rideal with CO<sub>2</sub> & COS adsorption





0:00

**18M General Assembly meeting** 

0:14 0:28

CO<sub>2</sub>





### CO<sub>2</sub> and COS retention is accounted

### Modified ER Mechanism: Results

Feed mixture of  $H_2S:CO_2=1:1$  on 13X at 45°C. Thick line at  $C/C_0 = 1$ .



57

### Modified ER Mechanism: Results – Reactant





### Modified ER Mechanism: Results – Product



at 
$$C/C_0 = 1$$
.