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from a linear to a circular economy
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processes
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unraveling the miracle

rℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛𝑎𝑡𝑖𝑜𝑛 = ? pbenzene

phydrogen𝑇
k

catalyst
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chemical/catalytic kinetics



model detail: kinetics

power law Langmuir-Hinshelwood microkinetics

r = kpB
npH2

m
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no unique style (or single truth!)

Da Vinci

cubism

pop art

simpson

‘de gustibus et coloribus, 

non disputandum est’
‘taste and color are 

not to be discussed’
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outline
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̶ conclusions
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today’s reality
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requires immediate solutions

methane oxidative conversion 

(OCoM) into ethylene, CO and H2

followed by hydroformylation to 

propanal

Noon et al. J. Nat. Gas Sci. Eng. 18 (2014) 406

Börner and Franke, Wiley, 2016
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https://www.sintef.no/projectweb/c123/ 

https://www.sintef.no/projectweb/c123/


C123 methane oxidative conversion and 
hydroformylation to propylene

̶ feedstock: natural gas/associated gas/biogas (methane and CO2)

̶ targeted product: easily transportable/high-value chemical (propanal, 

propanol, propylene)

̶ add-on vs modular route
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Oxidative Conversion of Methane (OCoM)

Oxidative Coupling of Methane (OCM)

• decades of research

• entire periodic table as potential 

catalyst

• awaiting successful 

commercialization

hydroformylation feedstock production

• save on separation

• enhance atom efficiency

• incorporate CO2

• easily liquefiable product

Pirro et al. Reac. Chem. Eng. 5 (2020) 584

16

Romero-Limones et al. Chem. Eng. Proc. (2024) revision submitted



CO2 impact at O2-lean conditions

o Selectivity of C2H4 is increased at the expense of C2H6 selectivity

o CO2 selectivity is decreased

(Conditions: T = 800 °C,  P = 1 bar, O2/CO2 = 0.5%/9.5% for La-Sr/CaO, O2/CO2 = 1.0%/9.0% for NaMnW/SiO2)

Seemingly CO2-ODH has occurred at these conditions
17Cheng et al. Int. J. Chem. Kinet. (2024) revision submitted



CO2 assisted dehydrogenation of ethane (CO2-ODH)

o OCM catalysts promotes CO2-ODH

o previous reports also verify NaMnW/SiO2 and La2O2CO3 are active in ODH of alkenes1, 2

(Conditions: T = 800 °C,  P = 1 bar, C2H6/CO2 = 8%/8%, Fv = 142 ml/min for La-Sr/CaO, 160 ml/min for NaMnW/SiO2)

XC2H6 XCO2 SC2H4 SCO

Blank 1 29.7% 1.9% 99.7% 0.3%

La-Sr/CaO 36.7% 10.6% 99.5% 0.5%

Blank 2 24.3% 1.3% 99.4% 0.6%

NaMnW/SiO2 27.3% 4.6% 99.2% 0.8%

1. J. Zhu et al. Catal. Today . 148, 310–315 (2009) 

2. Y. Bi et al. Catal. Today . 61, 369-375 (2000)

C2H6 + CO2 → C2H4 + CO + H2O

18



proposed mechanism

o CO2 competes with O2 and forms [O*]’

o [O*]’ is less active but capable of converting C2H6 into C2H4

• O2-rich: C2H4 further oxidized into COx – no or negative effect

• O2-lean: C2H4 survives from oxidation – positive effect

19Cheng et al. Int. J. Chem. Kinet. (2024) revision submitted



ethylene hydroformylation

homogeneous catalysis

• Rh or Co complexes

• high pressure

• liquid phase

heterogeneous catalysis

• grafting phosphine ligand 

on silica support

• rhodium coordination 

complexes

• tethered hydroformylation 

catalyst
Siradze et al. Ind. Eng. Chem. Res. (2021)
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from homogeneous to heterogenized catalysis

21



hydroformylation vs hydrogenation

22
Siradze et al. Chem. Eng. J. (2024) submitted
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heat requirements in chemical reactions

̶ endothermic reactions

̶ thermal cracking

̶ dehydrogenation

̶ reforming

̶ …

24/51

̶ exothermic reactions

̶ methanol synthesis

̶ Fischer Tropsch

̶ oxidation

̶ …

Westerterp, et al. Chemical Reactor Design and Operation Wiley (1991)



(strongly) endothermic reactions
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Wismann, et al. Ind. Eng. Chem. Res. 58 (2019) 23380

̶ heat transport focused reactor design

̶ narrow tubes

̶ fired furnace

̶ pronounced

temperature

gradients



how can we do better?
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heat containment electrification

chemistry ~ cooking



how can we do even better?
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microwave

induction

heating from

the inside



reactor electrification

electrical heating -> overcoming limitations of combustion

advantageous in terms of:

• energy efficiency

• process control

• safety and maintenance

• rapid heating

• …

28/51

Wismann, et al. Ind. Eng. Chem. Res. 58 (2019) 23380



electrical heating
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induction microwave Joule

Imtiaz, et al. Ind. Eng. Chem. Res. 63 (2024) 4205
sonication

plasma



induction heating

▪ alternating magnetic field 

with a high frequency

▪ heating without physical 

contact

30/51

Mortensen, et al. Ind. Eng. Chem. Res. 56 (2017) 14006



microwave heating

▪ heating through electromagnetic 

energy

31/51

Barham, et al. Chem. Rec. 19 (2019) 188

Ignacio, et al. Catal. Today 383 (2022) 21



Joule heating

▪ electrical energy transformation to thermal energy

▪ current flow between electrodes

▪ high energy efficiency

32/51
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ElectroThermal Fluidized Bed reactor (ETFB)

̶ combination:

̶ fluidization

̶ Joule heating

̶ compared to conventional fluidized beds

̶ better control over bed temperature

̶ highly energy efficient

̶ rapid and uniform heating

33/51

Fedorov J. Fluids Eng. 138 (2016) 044502
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e-CODUCT: context
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e-CODUCT: rationale

fast-response electrically heated catalytic reactor technology for 

CO2 reduction

why?

̶ current CO2 reduction technologies require highly pure 

streams

̶ no existing technologies for simultaneous CO2 and H2S 

reduction

̶ making more feedstock sources available

36/51



e-CODUCT: process lay-out
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CO2
COS

H2S H2O

CO sustainable products

S

platform molecule

marketable product

http://www.ecoduct.eu 2022-2025 GA 101058100

http://www.ecoduct.eu/


COS synthesis: experimental
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𝐶𝑂2/𝐻2𝑆: 1/1

4 g of

NaX Zeolite

NaX Zeolite

CO2+ H2S COS + H2O     



COS synthesis: modeling
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COS decomposition
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▪ COS decomposition to CO and 

sulphur 

▪ temperatures up to 800-1200 °C

▪ in situ heat generation by joule 

heating



e-CODUCT – ETFB modelling
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OBIWAN: context

̶ biogas (CH4 + CO2) valorization

̶ calorific

̶ to chemicals/(sustainable) aviation fuels

42/51



OBIWAN: process lay-out
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hydrogen production (from methane)

44/51

48%

30%

18%
4%

H2 production sources

Natural Gas Oil Coal Water

𝑆𝑀𝑅:  𝐶𝐻4 +  𝐻2𝑂 𝐶𝑂 + 3𝐻2 ∆𝐻 = 206
𝑘𝐽

𝑚𝑜𝑙

𝐷𝑀𝑅:  𝐶𝐻4 +  𝐶𝑂2  2𝐶𝑂 + 2𝐻2 ∆𝐻 = 247
𝑘𝐽

𝑚𝑜𝑙

𝑃𝑂𝑀:  𝐶𝐻4 +  𝑂2  𝐶𝑂 + 2𝐻2𝑂 ∆𝐻 = −36
𝑘𝐽

𝑚𝑜𝑙

𝑀𝑃: 𝐶𝐻4 𝐶 + 2𝐻2 ∆𝐻 = 74
𝑘𝐽

𝑚𝑜𝑙

Methane Pyrolysis on carbonaceous catalyst: 

❑ less energy intensive

❑ no greenhouse gas emission

❑ high purity H2

❑ cheap & sulfur resistant catalyst



OBIWAN: process lay-out
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conclusions, opportunities and perspectives

̶ from a linear to a circular economy

̶ catalysis

̶ reactors

̶ processes

̶ kinetics

̶ fundamental model-based optimization

̶ quantitative assessment

̶ validation qualitative understanding

47/51



conclusions, opportunities and perspectives

̶ (natural) gas valorization: OCoM process concept

̶ combination chemical reactions

̶ feedstock composition

̶ chemical reactor electrification

̶ more than connecting an electric heater to the grid

̶ reasoning from the inside

̶ CO2 emission reduction

̶ integration in a process

̶ …

48/51



conclusions, opportunities and perspectives

̶ challenges

̶ few large-scale vs many small-scale applications

̶ electricity availability

̶ impact on the chemistry

̶ …
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e-CODUCT: Want to know more?!
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Twitter: @eCODUCT2022 

https://twitter.com/eCODUCT2022

YouTube: @ecoduct2022 

https://www.youtube.com/@ecoduct202

2/about

#e-CODUCT #HorizonEurope #CO2Reduction 
#innovation #technology

https://e-coduct.eu/
https://www.linkedin.com/in/ecoduct/
https://twitter.com/eCODUCT2022
https://www.youtube.com/@ecoduct2022/about
https://www.youtube.com/@ecoduct2022/about


LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 125, 9052 Ghent, Belgium

E info.lct@ugent.be

T 003293311757 

https://www.lct.ugent.be



04 & 05 March 2024 5618M General Assembly meeting

Modified ER Mechanism

Eley-Rideal with CO2 & COS adsorption 

H2S + ∗  H2S∗ r1 =  k1
+CH2Sθ∗− k1

−θH2S

H2S∗+ CO2 
 COS +H2O∗ r2 =  k2

+CCO2
θH2Sθ∗− k2

−θH2O θ∗COS

H2O ∗  H2O + ∗ r3 =  k3
+θH2O− k3

−CH2Oθ∗

COS + *  COS *             r4 =  k4
+θCOS - k4

− CCOS θ∗

CO2 + *  CO2*         r5 =  k5
+CCO2

θ∗- k5
−θCO2

H2SCO2

COS H2OH2S

CO2

CO2

∗∗ ∗∗

CO2 and COS retention is accounted

Feed mixture of H2S:CO2=1:1 on 13X at 45°C. Thick line at C/C0 = 

1. 



04 & 05 March 2024 5718M General Assembly meeting

Modified ER Mechanism: Results
Feed mixture of H2S:CO2=1:1 on 13X at 45°C. Thick line at C/C0 = 1. 
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04 & 05 March 2024 5818M General Assembly meeting

Modified ER Mechanism: Results – Reactant 

Profiles
Feed mixture of H2S:CO2=1:1 on 13X at 45°C. Thick line at C/C0 = 1. 



04 & 05 March 2024 5918M General Assembly meeting

Modified ER Mechanism: Results – Product 

Profiles
Feed mixture of H2S:CO2=1:1 on 13X at 45°C. Thick line at C/C0 = 1. 
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