

INDUSTRIAL SYSTEMS ENGINEERING AND PRODUCT DESIGN

Robert Hanusa, Birger Raa, Stijn De Vuyst

INDUSTRIAL PLANNING OF ELECTRICALLY HEATED CATALYTIC **REACTORS WITH AN INTERMITTENT POWER SUPPLY**

This research optimizes the supply of energy to a chemical plant that converts waste products CO₂ and H₂S into industrial chemicals. Energy comes from renewable sources, which are less predictable than conventional energy sources.

- Funded by the European Union
 - The e-CODUCT project is funded under Horizon Europe
- A Multidisciplinary team:
- Our department is developing the economic model.
- The UGent Laboratory for Chemical Technology (LCT) is developing micro-kinetic models for the

Converting waste CO₂ and H₂S to useful chemicals

> A chemical plant (schematic below) has reactors for two chemical reactions:

 $CO_2 + H_2S \rightarrow COS + H_2O$ $COS \rightarrow CO + S$

- The plant is powered by solar and wind energy.
 - Intermittent •
 - Difficult to predict with high accuracy
- > To manage fluctuations in energy generation, a battery is used as a first buffer, and then a connection to the grid serves as a backup.

<u>Research goals:</u>

- Developing a simulation model for evaluating what-if scenarios using a discrete-event Monte Carlo simulation based on varying energy inputs.
- Create an industrial process planning module using mathematical/stochastic optimization algorithms.

- reactions.
- Our industry partners below also play a critical role:

benkei Benkei (BENKEI)

CÒ

Centre national de la recherche scientifique CNRS (CNRS-LCS)

Center Odličnosti Nizkoogljične tehnologije Zavod (CO NOT)

Dechema Gesellschaft für C DECHEMA Chemischetechnik und Biotechnologie (DECHEMA)

Capex Optimisation

- > Our model allows us to run simulations while varying:
 - * Solar panel area
 - ₩ Wind turbine count
 - 🖙 Battery size
 - ✤ Several control parameters
- Simulations were treated as a DOE
 - **Full factorial with two levels**

- Box-Behnken with three levels
- A 2nd-order polynomial model was fit to the results
- > Optimisation
 - \in Based on our model, we could optimise the features to choose the most economical plant design and control parameters that maximize profitability.
- ➢ Example
 - Below is an example of the results using real weather data from 2013 2020.
 - The graph shows the relationship between profitability, solar panel area, and battery size when the other parameters are held constant.

Battery control logic

- Employing an energy store, such as a battery, is critical for buffering fluctuations in solar and wind energy.
- Forecasted weather conditions are used in production planning.
 - When low energy production is forecasted, production decreases to allow the battery to \bullet load up.
- > The battery set point is controlled using the ratios of the total forecasted production for hours 0-3 and 4-6 after the present to an approximated average energy production. If the forecasted energy production is lower than average, the battery set point will increase, and vice versa.

Contact Robert.Hanusa@UGent.be Birger.Raa@UGent.be Stijn.DeVuyst@UGent.be e-coduct.eu

